Uncertainty of outcome is probably among the concepts most widely discussed and analyzed in Sport Management and Sports Economic theory. The concept, introduced by [Rottenberg, 1956] relates uncertainty of outcome in a sports competition positively to demand.
That is, a very predictable competition is less interesting to watch than a more unpredictable competition. At the same time, maximizing uncertainty of outcome is not a relevant strategy. A competition with too much uncertainty of outcome will resemble a lottery, which without very high prices is not very interesting. Hence, a balanced, or optimal level (possibly depending on sport and audience) should exist.
The actual economic significance of too low uncertainty of outcome is hard to quantify. However, our observations on audience numbers in Norwegian national handball leagues (see the Introduction section) indicate that ticket income is at a low level. Low ticket income leads to low sponsor income and maybe more importantly, low TV-income.
Originally a US concept, much of early literature discuss uncertainty of outcome related to US sports, see [Neale, 1964], [Noll, 1974], [Borland and MacDonald, 2003]. But of course, due to its economic significance, also football (or soccer as the Americans call it) has been a major research focus for a relatively long time, see [Forrest and Simmons, 2002]. More recently, uncertainty of outcome has also been discussed in relation to other sports; cross-country skiing and biathlon by [Solberg, Hanstad, and Steen-Johnsen, 2009], chess by [Majek and Iida, 2004] and tennis by [Corral, 2009] to name a few. An interesting recent theoretical approach can be found in [Ely, Frankel, and Kamenica, 2015].
Although the concept is logical (almost obvious), empirical attempts to measure it are not completely conclusive – see e.g. [Szymanski, 2009] and [Buraimo and Simmons, 2008]. Some researchers like [Haugen, 2016b] and [Pawlowski, 2013] have hypothesized that certain football fans are “in love” with their favorite team, and will hence be better off with certain victories rather than thrilling matches, sometimes ending in unexpected and unpleasant losses. As a consequence, the net demand effect of uncertainty of outcome may depend on different types of fans, and in some situations, too many aficionados may induce less positive demand effects due to uncertainty of outcome.
As pointed out in [Dawson and Downward, 2005], a series of methodological options/problems exist related to measurement of uncertainty of outcome. In the short run, and when team sport leagues are the candidate for analysis (as in our case), basically two options exist: table rankings or table point scores. The nice thing about rankings is of course that difference in point score systems – as in the case of handball/football – does not matter. Still, pure rankings miss the obvious – if teams win by many points, leagues may be determined early, and all this information will be lost.
For a longer time period, the obvious point that a repeated ranking structure can and should be identified as an element of low uncertainty of outcome, will be missed by the methodology we apply. But, as our main concern in this article is a comparison between handball and football, the finer issues of problems in uncertainty of outcome measurement may – as we see it – be left out.
Rule changes and their possible influence on uncertainty of outcome are more sparsely treated in the literature. A general review is found in [Szymanski, 2003]. The change from the 2-1-0 to the 3-1-0 point score system in football has drawn the interest of several authors, see for instance [Haugen, 2008] and [Brocas and Carillo, 2004]. Consequences in changed qualification rules for the Champions league are discussed in [Schokkaert and Swinnen, 2016].
Of particular interest for this paper is the book of [Haugen, 2012]. This work provides an interesting theoretical comparison between football and handball with respect to uncertainty of outcome.
It is argued that the complexity of gameplay is significantly larger in football than in handball, due to certain game play limitations in handball. For instance: the three-step-rule and forbidden passive play are used as arguments why football should have more competitive play and hence larger uncertainty of outcome. A very limited set of empirical examples are given, showing the author’s points.